Model Feedback in Bayesian Propensity Score Estimation
نویسندگان
چکیده
منابع مشابه
Model feedback in Bayesian propensity score estimation.
Methods based on the propensity score comprise one set of valuable tools for comparative effectiveness research and for estimating causal effects more generally. These methods typically consist of two distinct stages: (1) a propensity score stage where a model is fit to predict the propensity to receive treatment (the propensity score), and (2) an outcome stage where responses are compared in t...
متن کاملCutting feedback in Bayesian regression adjustment for the propensity score.
McCandless, Gustafson and Austin (2009) describe a Bayesian approach to regression adjustment for the propensity score to reduce confounding. A unique property of the method is that the treatment and outcome models are combined via Bayes theorem. However, this estimation procedure can be problematic if the outcome model is misspecified. We observe feedback that can bias propensity score estimat...
متن کاملBayesian Model Averaging for Propensity Score Analysis.
This article considers Bayesian model averaging as a means of addressing uncertainty in the selection of variables in the propensity score equation. We investigate an approximate Bayesian model averaging approach based on the model-averaged propensity score estimates produced by the R package BMA but that ignores uncertainty in the propensity score. We also provide a fully Bayesian model averag...
متن کاملUncertainty in Propensity Score Estimation: Bayesian Methods for Variable Selection and Model Averaged Causal Effects.
Causal inference with observational data frequently relies on the notion of the propensity score (PS) to adjust treatment comparisons for observed confounding factors. As decisions in the era of "big data" are increasingly reliant on large and complex collections of digital data, researchers are frequently confronted with decisions regarding which of a high-dimensional covariate set to include ...
متن کاملBayesian propensity score analysis for observational data.
In the analysis of observational data, stratifying patients on the estimated propensity scores reduces confounding from measured variables. Confidence intervals for the treatment effect are typically calculated without acknowledging uncertainty in the estimated propensity scores, and intuitively this may yield inferences, which are falsely precise. In this paper, we describe a Bayesian method t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrics
سال: 2013
ISSN: 0006-341X
DOI: 10.1111/j.1541-0420.2012.01830.x